$\qquad$

## Lesson 9.2 Length of Line Segments

## Use the symbol| | to write the absolute values of the following numbers.

1. 7
2. -5
3. -18
4. 101

## Find the perimeter of each polygon.

5. Figure $B C D E$ is a trapezoid.


Perimeter
$=$ $\qquad$ $+$
$=$ $\qquad$ cm
$\qquad$ $+$ $\qquad$ $+$ $\qquad$
6. Figure FGHJ is a parallelogram.


## Perimeter

$\qquad$ $+$ $\qquad$ $+$ $\qquad$ $+$ $\qquad$
$=$ $\qquad$ m
7. Figure $K L M N$ is a rhombus.


Perimeter
$\qquad$
$=$
$+$ $+$
$=$ $\qquad$ in.
$\qquad$
$\qquad$

Plot each pair of points on the coordinate plane below. Connect the points to form a line segment and find its length.

Example
a) $\quad A(2,0)$ and $B(6,0)$

By counting the number of units from 2 to 6 , the length of $\overline{A B}$
is $\qquad$ units.
b) $\quad C(-3,0)$ and $D(-9,0)$

By counting the number of units from -3 to -9 , the length of $\overline{C D}$
is $\qquad$ units.
c) $E(0,3)$ and $F(0,5)$
$E F=\mid y$-coordinate of $\ldots \quad|-| y$-coordinate of $\ldots \quad E \mid$

$$
=|5-|-3-2 \text { units }
$$

The length of $\overline{E F}$ is $\qquad$ units.

To find the length of $\overline{E F}$, subtract $E O$ from $F O$.
d) $\quad G(0,2)$ and $H(0,-2)$
$G H=\mid y$-coordinate of $\_$G_| $|+| y$-coordinate of $\xrightarrow{H} \mid$

$$
=|2-|+2|=4
$$

The length of $\overline{G H}$ is 4 units.

To find the length of $\overline{G H}$, add GO and OH .


Name: $\qquad$
$\qquad$
8. $M(5,0)$ and $N(8,0)$

By counting the number of units from 5 to 8 , the length of $\overline{M N}$
is $\qquad$ units.
9. $P(-2,0)$ and $Q(-7,0)$

By counting the number of units from -2 to -7 , the length of $\overline{P Q}$
is $\qquad$ units.


Name: $\qquad$ Date:
10. $R(0,5)$ and $S(0,9)$

$$
\begin{aligned}
R S & =\mid y \text {-coordinate of } \ldots \quad|-| y \text {-coordinate of } \ldots \\
& =|-\quad|-\quad \mid \\
& =\longrightarrow \text { units }
\end{aligned}
$$

The length of $\overline{R S}$ is $\qquad$ units.
11. $T(0,3)$ and $U(0,-6)$
$T U=\mid y$-coordinate of $\quad \ldots \quad|+| y$-coordinate of $\ldots$

$$
=\mid
$$

$$
=
$$

$\qquad$ units

The length of $\overline{T U}$ is $\qquad$ units.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$\qquad$
$\qquad$

Plot each pair of points on the coordinate plane below. Connect the points to form a line segment and find its length.

## Example

a) $\quad A(1,3)$ and $B(4,3)$
$A B=\mid x$-coordinate of $\quad B \quad|-| x$-coordinate of $\xrightarrow{A} \mid$

$$
=|-4-|-1
$$

$$
=3
$$

The length of $\overline{A B}$ is $\qquad$ units.
b) $\quad C(-4,1)$ and $D(-4,7)$
$C D=\mid y$-coordinate of $\xlongequal[C]{D}|-| y$-coordinate of $\xrightarrow[C]{C} \mid$

$$
=|-7-|-1
$$

$$
=6
$$

The length of $\overline{C D}$ is $\qquad$ units.


Name: $\qquad$ Date: $\qquad$
c) $\quad E(5,4)$ and $F(5,-4)$
$E F=\mid y$-coordinate of $\underline{E}|+| y$-coordinate of $\ldots \quad \mid$
$=|-4-|+4$
$=8$ units
The length of $\overline{E F}$ is $\qquad$ units.
d) $\quad \mathrm{G}(-3,-2)$ and $\mathrm{H}(4,-2)$
$G H=\mid x$-coordinate of $\_$G_|x-coordinate of $\xlongequal{H} \mid$

$$
=|-3-|+4
$$

$$
=-7
$$

The length of $\overline{G H}$ is $\qquad$ 7 units.

To find the length of $\overline{G H}$, add the distance of point $G$ from the $y$-axis to the distance of point $H$ from the $y$-axis.


Name: $\qquad$ Date: $\qquad$
12. $J(-6,2)$ and $K(-1,2)$
$J K=\mid x$-coordinate of $\quad ـ \quad|-| x$-coordinate of $\quad \_$__ $\mid$
$=|=-\quad|-\mid$
$=$ $\qquad$ units

The length of $\overline{J K}$ is $\qquad$ units.
13. $L(4,2)$ and $M(4,8)$

$$
\begin{aligned}
L M & =\mid y \text {-coordinate of } \quad \ldots \quad|-| y \text {-coordinate of } \ldots \\
& =|-\quad| \\
& =\longrightarrow \text { units }
\end{aligned}
$$

The length of $\overline{L M}$ is $\qquad$ units.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$\qquad$
$\qquad$
14. $N(1,6)$ and $P(1,-3)$

$$
\begin{aligned}
N P & =\mid y \text {-coordinate of } \ldots \_|+| y \text {-coordinate of } \_\mid \\
& =|\longrightarrow| \\
& =\longrightarrow \text { units }
\end{aligned}
$$

The length of $\overline{N P}$ is $\qquad$ units.
15. $\quad Q(-6,-4)$ and $R(5,-4)$

$$
\begin{aligned}
& Q R=\mid x \text {-coordinate of } \quad \ldots \quad|+| x \text {-coordinate of } \quad \ldots \quad \mid \\
& = \\
& = \\
& \text { units }
\end{aligned}
$$

The length of $\overline{Q R}$ is $\qquad$ units.

$\qquad$
$\qquad$

## In the diagram, rectangle $P Q R S$ represents a rectangular living room. The side length of each grid square is $\mathbf{2}$ feet. Use the diagram to answer questions a) to e).

## Example


a) Give the coordinates of points $P, Q, R$, and $S$.

The coordinates are $P(2,2), Q(28,2), R(28,18)$, and $S(2,18)$.
b) Find the length and width of the living room in feet.

$$
\begin{aligned}
\text { Length } & =\underline{P Q} \\
& =28 \\
& =26 \mathrm{ft}
\end{aligned}
$$

The length of the living room is $\qquad$ feet.

Width $=$ $\qquad$

$$
=18-2
$$

$$
=16 \mathrm{ft}
$$

The width of the living room is $\qquad$ 16 feet.

Name: $\qquad$ Date:
c) Find the area of the living room in square feet.

$$
\begin{aligned}
\text { Area } & =\ell \mathrm{w} \\
& =\frac{26}{16} \\
& =416 \mathrm{ft}^{2}
\end{aligned}
$$

The area of the living room is 416 square feet.
d) Find the perimeter of the living room in feet.

$$
\begin{aligned}
\text { Perimeter } & =2 \cdot(\ell+w) \\
& =2 \cdot\left(\frac{26}{}+\frac{16}{}\right) \\
& =2 \cdot \frac{42}{84} \mathrm{ft}
\end{aligned}
$$

The perimeter of the living room is $\qquad$ 84 feet.
e) There is a standing lamp at point $W$ in the living room at a distance of 22 feet from $\overline{P S}$ and 2 feet from $\overline{P Q}$. Give the coordinates of point $W$ and plot it on the coordinate plane.
1 grid square represents 2 feet.

$$
\begin{aligned}
22 \mathrm{ft} & =\frac{22}{2} \div \frac{2}{} \\
& =11 \text { grid squares }
\end{aligned}
$$

For point $W$ to be in the living room, the $x$-coordinate has to be
11 grid squares to the right of $\overline{P S}$.
$\underline{1}+\underline{11}=\underline{12}$ grid squares
So, point $W$ is 12 grid squares to the right of the $y$-axis.
The $x$-coordinate of point $W$ is $12 \times 2=24$.
$\qquad$
$\qquad$

For point $W$ to be in the living room, the $y$-coordinate has to be
$\qquad$ grid square above $\overline{\mathrm{PQ}}$.

1 $\qquad$ $=$ $\qquad$ grid squares

So, point $W$ is $\qquad$ 2 grid squares above the $x$-axis.

The $y$-coordinate of point $W$ is $\qquad$ 2 $x$ $\qquad$ $=$ $\qquad$ 4

The coordinates of point $W$ are 24 4 ——).

$\qquad$
$\qquad$

In the diagram, rectangle $A B C D$ represents a park. The side length of each grid square is $\mathbf{5}$ feet. Use the diagram to answer questions $\mathbf{1 6}$ to 20.

16. Give the coordinates of points $A, B, C$, and $D$.
17. Find the length and width of the park in feet.

$$
\begin{aligned}
\text { Length } & =\square \\
& =\text { _ } \\
& =\text { _ }-\quad \mathrm{ft}
\end{aligned}
$$

The length of the park is $\qquad$ feet.

Width $=$ $\qquad$
$\qquad$
$=$ -
$=$ $\qquad$ ft
$\qquad$ feet.

Name:
Date:
18. Find the area of the park in square feet.

```
Area \(=\ell w\)
\[
-\quad-
\]
```

$\qquad$
$\qquad$

```
\[
=\ldots \mathrm{ft}^{\prime}
\]
```

The area of the park is $\qquad$ square feet.
19. Find the perimeter of the park in feet.

$$
\begin{aligned}
\text { Perimeter } & =2 \cdot(\ell+w) \\
& =2 \cdot(\square) \\
& =2 \cdot \square \\
& =\square
\end{aligned}
$$

The perimeter of the park is $\qquad$ feet.
20. There is a tree planted at point $E$ in the park at a distance of 10 feet from $\overline{A B}$ and 5 feet from $\overline{A D}$. Give the coordinates of point $E$ and plot it on the coordinate plane.

1 grid square represents 5 feet.
$10 \mathrm{ft}=$ $\qquad$ $\div$ $\qquad$
$=$ $\qquad$ grid squares

For point $E$ to be in the park, the $x$-coordinate has to be $\qquad$ grid squares to the right of $\overline{A B}$.
$\qquad$ $+$ $\qquad$ $=$ $\qquad$ grid squares

So, point $E$ is $\qquad$ grid squares to the right of the $y$-axis.

The $x$-coordinate of point $E$ is $\qquad$ $\times$ $\qquad$ = $\qquad$

Name: $\qquad$ Date: $\qquad$

For point $E$ to be in the park, the $y$-coordinate has to be $\qquad$ grid square below $\overline{A D}$.
$\qquad$ - $\qquad$ $=$ $\qquad$ grid squares

So, point $E$ is $\qquad$ grid squares above the $x$-axis.

The $y$-coordinate of point $E$ is $\qquad$ $\times$ $\qquad$ $=$ $\qquad$

The coordinates of point $E$ are ( $\qquad$ , $\qquad$ ).

$\qquad$
$\qquad$

## In the diagram, trapezoid JKLM represents a stage. The side length of each grid square is $\mathbf{3}$ meters. Use the diagram to answer questions 21 to 25.


21. Give the coordinates of points $J, K, L$, and $M$.
22. Find the sum of the parallel sides, and the height of trapezoid JKLM in meters.
23. Find the area of the stage in square meters.

Name: $\qquad$
$\qquad$
24. Jason measured the length of $\overline{J K}$ and found it to be is 22.8 meters. Find the perimeter of the stage in meters.
25. A cross is marked at point $N$ on the stage for an upcoming production.

Point $N$ is at a distance of 9 meters from $\overline{J M}$ and 15 meters from $\overline{M L}$. Give the coordinates of point $N$ and plot it on the coordinate plane.

11. $(-8,1)$
12. $(-6,-4)$
13. $(3,3)$
14. $(6,-2)$

15. triangle
16. parallelogram
17. square
18. trapezoid
19. rectangle

20. rectangle
21. parallelogram
22. rhombus or parallelogram
23. trapezoid
24. triangle


## Lesson 9.2

1. $|7|=7$
2. $|-5|=5$
3. $|-18|=18$
4. $|101|=101$
5. Perimeter

$$
\begin{aligned}
& =\underline{7}+\underline{12}+\underline{6}+\underline{8} \\
& =\underline{33} \mathrm{~cm}
\end{aligned}
$$

6. Perimeter

$$
\begin{aligned}
& =\underline{13}+\underline{9}+\underline{13}+\underline{9} \\
& =\underline{44} \mathrm{~cm}
\end{aligned}
$$

7. Perimeter

$$
\begin{aligned}
& =\underline{7}+\underline{7}+\underline{7}+\underline{7} \\
& =\underline{28} \mathrm{in} .
\end{aligned}
$$

8. 3
9. 5

10. $R S=\mid y$-coordinate of $\underline{S} \mid$

- |y-coordinate of $\underline{R} \mid$
$=|\underline{9}|-|\underline{5}|$
$=4$ units
The length of $\overline{R S}$ is $\underline{4}$ units.

11. $T U=\mid y$-coordinate of $I \mid$
$+\mid y$-coordinate of $\underline{U} \mid$
$=|\underline{3}|+|-6|$
$=\underline{9}$ units
The length of $\overline{T U}$ is $\underline{9}$ units.

12. $J K=\mid x$-coordinate of $\underline{J}|-| x$-coordinate of $\underline{K} \mid$

$$
\begin{aligned}
& =|\underline{-6}|-|-1| \\
& =\underline{5} \text { units }
\end{aligned}
$$

The length of $\overline{J K}$ is $\underline{5}$ units.
13. $L M=\mid y$-coordinate of $\underline{M}|-| y$-coordinate of $\underline{L} \mid$

$$
\begin{aligned}
& =|\underline{8}|-|\underline{2}| \\
& =\underline{6} \text { units }
\end{aligned}
$$

The length of $\overline{L M}$ is $\underline{6}$ units.

14. $N P=\mid y$-coordinate of $\underline{N}|+| y$-coordinate of $\underline{P} \mid$

$$
\begin{aligned}
& =|\underline{6}|+|-3| \\
& =\underline{9} \text { units }
\end{aligned}
$$

The length of $\overline{N P}$ is $\underline{q}$ units.
15. $Q R=\mid x$-coordinate of $\underline{Q}|+| x$-coordinate of $\underline{R} \mid$

$$
\begin{aligned}
& =|\underline{-6}|+|\underline{5}| \\
& =\underline{11} \text { units }
\end{aligned}
$$

The length of $\overline{Q R}$ is 11 units.

16. $A(10,55), B(10,5), C(40,5), D(40,55)$
17. Length $=\underline{A B}$

$$
\begin{aligned}
& =\underline{55}-\underline{5} \\
& =\underline{50} \mathrm{ft}
\end{aligned}
$$

The length of the park is 50 feet.
Width $=\underline{B C}$

$$
\begin{aligned}
& =\underline{40}-\underline{10} \\
& =\underline{30} \mathrm{ft}
\end{aligned}
$$

The width of the park is 30 feet.
18. Area $=\ell w$

$$
\begin{aligned}
& =\underline{50} \cdot \underline{30} \\
& =\underline{1,500} \mathrm{ft}^{2}
\end{aligned}
$$

The area of the park is 1,500 square feet.
19. Perimeter $=2 \cdot(\ell+w)$

$$
\begin{aligned}
& =2 \cdot(\underline{50}+\underline{30}) \\
& =2 \cdot \underline{80} \\
& =\underline{160} \mathrm{ft}
\end{aligned}
$$

The perimeter of the park is $\underline{160}$ feet.
20. $10 \mathrm{ft}=\underline{10} \div \underline{5}$

$$
=\underline{2} \text { grid squares }
$$

For point $E$ to be in the park, the $x$-coordinate has to be $\underline{2}$ grid squares to the right of $\overline{A B}$.
$\underline{2}+\underline{2}=\underline{4}$ grid squares
So, point $E$ is $\underline{4}$ grid squares to the right of the $y$-axis.
The $x$-coordinate of point $E$ is $\underline{4} \times \underline{5}=\underline{20}$.
For point $E$ to be in the park, the $y$-coordinate has to be 1 grid square below $\overline{A D}$.
$\underline{11}-\underline{1}=\underline{10}$ grid squares
So, point $E$ is 10 grid squares above the $x$-axis.
The $y$-coordinate of point $E$ is $\underline{10} \times \underline{5}=\underline{50}$.
The coordinates of point $E$ are (20, 50).

21. $J(15,24), K(6,3), L(36,3), M(36,24)$
22. Sum of the parallel sides $=51$ meters Height of the trapezoid $=21$ meters
23. Area of the stage $=535.5$ square meters
24. 94.8 meters
25. $(21,15)$


## Lesson 9.3

1. 


2. It is a straight line graph.
3. From the graph, Shannon's wage is $\$ 28$.
4. From the graph, Shannon must work for $\underline{5}$ hours.
5. $w=8 \cdot(\underline{5}+\underline{3})$

$$
\begin{aligned}
& =8 \cdot \underline{8} \\
& =\$ \underline{64}
\end{aligned}
$$

Shannon earns \$64.
6. $h \geq 2.5$
7. $\underline{w}$ is the dependent variable and $\underline{h}$ is the independent variable.
8.

| Time (t weeks) | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Rental Fees (c dollars) | 4 | 6 | $\underline{8}$ | $\underline{10}$ | $\underline{12}$ | $\underline{14}$ |

Rental Fees of a Second-hand Bookstore

9. 4 weeks
10. $\$ 22$
11. $t<3$

## Chapter 10

## Lesson 10.1

1. rectangle
$\overline{W Z}$ is parallel to $\overline{X Y}$ .
$\overline{W X}$ is parallel to $\overline{Z Y}$.
2. square
$\overline{M Q}$ is parallel to $\overline{N P}$.
$\overline{\overline{M N}}$ is parallel to $\overline{\overline{Q P}}$.
